Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Manufacturing Technology

2005-01-11
2005-01-0470
In October 1999, General Motors contracted Dana Corporation to manufacture an all-aluminum spaceframe for the 2006 Chevrolet Corvette Z06. Corvette introduced its first ever all-aluminum frame (see Figure 1) to the world at the 2005 North American International Auto Show (NAIAS) in Detroit, Michigan. The creation of this spaceframe resulted in a significant mass reduction and was a key enabler for the program to achieve the vehicle level performance results required for a Z06 in an ever-growing market. Dana Corporation leveraged ALCOA's (Aluminum Company of America) proven design capabilities while incorporating new MIG welding, laser welding, Self-Pierce Riveting (SPR), and full spaceframe machining to join General Motors (GM) Metal Fabrication Division's (MFD) hydroformed rails to produce the Corvette Z06's yearly requirement of 7000 units. This paper describes the technologies utilized throughout the assembly line and their effect on the end product.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

2006 Corvette Z06 Carbon Fiber Structural Composite Panels- Design, Manufacturing and Material Development Considerations

2005-04-11
2005-01-0469
The General Motors Corvette Product Engineering Team is in a continual search for mass-reduction technologies which provide performance improvements that are affordable and add value for their customers. The structural composite panels of the C6 Z06 provided a unique opportunity to extend the use of carbon fiber reinforced materials to reduce mass and enhance performance. The entire vehicle set of composite panels was reviewed as candidates for material substitution, with the selection criteria based on the cost per kg of mass saved, tooling cost required, and the location of the mass to be saved. Priority was extended to mass savings at the front of the vehicle. After a carefully balanced selection process, two components, both requiring redesign because of the Z06’s wider stance, met the criteria: the Front Wheelhouse Outer Panel and Floor Panels. The current Floor Panels, first used on the C5, are large and are a balsawood-cored glass fiber reinforced composite design.
Book

2013 Passenger Car Yearbook

2013-10-07
Each year car manufacturers release new production models that are unique and innovative. The production model is the result of a lengthy process of testing aerodynamics, safety, engine components, and vehicle styling. The new technologies introduced in these vehicles reflect changing standards as well as trends of the market. From Acura to Volvo, this book provides a snapshot of the key engineering concepts and trends of the passenger vehicle industry over the course of a year. For each of the 43 new production models, articles from Automotive Engineering International (AEI) magazine detail technology developments as well as a comprehensive look at the 2013 passenger car models. This book provides those with an interest in new vehicles with all the information on the key automotive engineering and technology advancements of the year.
Book

2013 Passenger Car Yearbook and Concept Car Year in Review: 2013

2013-12-18
This set consists of two books, 2013 Passenger Car Yearbook, and Concept Car Year in Review: 2013. Both include articles that were written by the award-winning editors of Automotive Engineering International. The 2013 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles. Concept Car Year in Review: 2013 provides insight to the key engineering ideas that were introduced in concept and prototype cars during that year.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Book

2013 and 2014 Passenger Car Yearbook

2013-11-25
This set consists of two books, 2013 Passenger Car Yearbook, and 2014 Passenger Car Yearbook. Both include articles that were written by the award-winning editors of Automotive Engineering International. Both books detail the key engineering developments in the passenger vehicle industry of that year. Each new car model is profiled in its own chapter with one or more articles.
Book

2014 Passenger Car Yearbook

2013-12-10
Each year car manufacturers release new production models that are unique and innovative. These cars begin as concepts then go through the process of prototyping. The process of creating a new model can take years, involving extensive testing and refining of aerodynamics, safety, engine components, and vehicle styling. The production model is the result of this lengthy process, and its new technologies reflect the latest engineering standards as well as market trends. The 2014 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles that were previously published and written by the award-winning editors of Automotive Engineering International. The novel engineering aspects of each new model are explored in depth.
Book

2014 Passenger Car Yearbook and Concept Car Year in Review: 2013

2013-12-18
This set consists of two books, 2014 Passenger Car Yearbook, and Concept Car Year in Review: 2013. Both include articles that were written by the award-winning editors of Automotive Engineering International. The 2014 Passenger Car Yearbook details the key engineering developments in the passenger vehicle industry of the year. Each new car model is profiled in its own chapter with one or more articles. Concept Car Year in Review: 2013 provides insight to the key engineering ideas that were introduced in concept and prototype cars during that year.
Book

2016 Mobility Engineering Professionals Salary Survey

2016-07-14
EXCLUSIVE MEMBER BENEFIT: 2016 MOBILITY ENGINEERING PROFESSIONAL SALARY SURVEY AND CALCULATOR Gain better insight into compensation practices: this salary survey is the only study its kind to explore levels and changes in compensation and employment for engineers and technical employees in the automotive, aerospace, and commercial vehicle industries. It benchmarks compensation levels based by geography, education, industry sector, experience, and managerial and budgetary responsibility. The full report is available to SAE International members by signing into your My SAE account and downloading it into your My Library area. Members also have full access to the updated online interactive salary calculator by visiting SAE’s website. Become a member of SAE International to access this exclusive benefit for free, or purchase it today. YOU BELONG HERE. Membership helps you succeed both personally and professionally. Join us today.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

250 °C SiC Power Module Package Design

2008-11-11
2008-01-2892
In order to take full advantage of SiC, a high temperature package for power module using SiC devices was designed, developed, fabricated and tested. The details of the material selection and fabrication process are described. High temperature reliability test and power test shows that the package presented in this paper can perform well at the high junction temperature.
Standard

265°F Vacuum Cure, Epoxy Prepregs

2017-11-08
WIP
AMS6566
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have one slash/detail specs.
Standard

265°F Vacuum Cure, Epoxy Prepregs Type 42, Class 2, Grade 193, Style 12K-193-SFP-OSI

2017-11-10
WIP
AMS6566/1
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have one slash/detail specs.
Standard

265°F, Autoclave Vacuum Bag Cure, Epoxy Prepreg, Type 33, Class 1, Grade 148, Intermediate Modulus Carbon Fiber

2017-11-10
WIP
AMS6568/1
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have three slash/detail specs.
Standard

265°F, Autoclave Vacuum Bag Cure, Epoxy Prepreg, Type 40, Class 2, Grade 195, Style 3K-PW, Standard Modulus Carbon Fiber

2017-11-10
WIP
AMS6568/2
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness.
X